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Hopfield Model

•A Hopfield Network is a model of associative 
memory. It is based on Hebbian learning but uses 
biHopf. ModelHopf. Model binary neurons. 

•It provides a formal model which can be analysed 
for determining the storage capacity of the network.for determining the storage capacity of the network.

•It is inspired in its formulation by statistical 
mechanics models (Ising model) for magnetic 
materials.

•It provides a path for generalising deterministic 
network models to the stochastic casenetwork models to the stochastic case.



Hopfield Model-1

•The associative memory problem is summarised as 
follows:

Hopf. ModelHopf. Model Store a set of p patterns ξi
μ in such a way that when 

presented with a new pattern ζi , the network responds 
by producing whichever one of the stored patterns most 
closely resembles ζi .

•The patterns are labelled μ=1,2,…,p, while the 
units in the network are labelled by i=1 2 N Bothunits in the network are labelled by i=1,2,…,N. Both 
the stored patterns, ξi

μ , and the test patterns, ζi , can 
be taken to be either 0 or 1 on a site i, though we will 
adopt a different convention henceforthadopt a different convention henceforth.

•An associative memory can be thought as a set of 
attractors, each with its own basin of attraction.



Hopfield Model-2

•The dynamics of the system carries a starting 
points into one of the attractors as shown in the 

t fiHopf. ModelHopf. Model next figure.



Hopfield Model-3

•The Hopfiled model starts with the standard 
McCulloch-Pitts model of a neuron:

Hopf. ModelHopf. Model ∑ −=+
j

ijiji tnwtn ))(()1( μΘ

Where Θ is the step function. In the Hopfield model 
the neurons have a binary output taking the values 
–1 and 1 Thus the model has the following form:1 and 1. Thus the model has the following form:
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Where the Si and ni are related thought the formula: 



Hopfield Model-4

Si=2ni-1. The thresholds are also related by: θi=2μi -
∑jwij , and the sgn(•) function is defined as:
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•For ease of analysis in what follows we will drop 
the thresholds (θi=0) because we will analyse 
mainly random patterns and the thresholds are notmainly random patterns and the thresholds are not 
very useful in this context. In this case the model is 
written as:
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Hopfield Model-5

•There are at least two ways in which we might 
carry out the updating specified by the above 

tiHopf. ModelHopf. Model equation:

•Synchronously: update all the units simultaneously 
at each time step;p;

•Asynchronously: Update them one at a time. In this 
case we have two options:

•At each time step, select at random a unit i to be 
updated, and apply the formula;

•Let each unit independently choose to update p y p
itself according to the above formula, with some 
constant probability per unit time.



Hopfield Model-6

•We will study the memorisation (i.e. find a set of 
suitable wij) of a set of random patterns, which are 

d f i d d t bit ξ hi h h t kHopf. ModelHopf. Model made up of independent bits ξi which can each take 
on the values +1 and –1 with equal probability.

•Our procedure for testing whether a proposed formOur procedure for testing whether a proposed form 
of wij is acceptable is first to see whether the 
patterns are themselves stable, and then to check 
whether small deviations from these patterns arewhether small deviations from these patterns are 
corrected as the network evolves.

•We distinguish two cases:

•One pattern

•Many patterns



Hopfield Model-7: Storage of one pattern

•The condition for a single pattern to be stable is:

∑= iallforw )()sgn( ξξ
Hopf. ModelHopf. Model

•It is easy to see that this is true if get the weight

∑
j

jiji iallforw )()sgn( ξξ

It is easy to see that this is true if get the weight 
as proportional to the product of the components:

jiijw ξξ∝

Since ξi
2=1. For convenience we get the constant of 

proportionality to be 1/N, where N is the number of 
units in the network Thus we have:units in the network. Thus we have:

jiij N
w ξξ1

=



Hopfield Model-8: Storage of one pattern

•Furthermore, it is also obvious that even if a 
number (fewer than half) of the bits of the starting 

tt S (i t l t ξ ) th illHopf. ModelHopf. Model pattern Si are wrong (i.e. not equal to ξi ), they will 
be overwhelmed in the sum for the net input:

∑= Swh

By the majority that are right and sgn(hi) will still 
give ξi. This means that the network will correct 

∑=
j

jiji Swh

errors as desired, and we can say that the pattern ξi
is an attractor.

•Actually there are two attractors in this simple•Actually there are two attractors in this simple 
case; the other one is - ξi. This is called the 
reversed state. All starting configurations with



Hopfield Model-9: Storage of one pattern

more than half the bits different from the original 
pattern will end up in the reversed state. The 

fi ti i t i ll di id d i t tHopf. ModelHopf. Model configuration space is symmetrically divided into two 
basins of attraction, as shown in the next figure:



Hopfield Model-10: Storage of many patterns

•In the case of many patterns the weights are 
assumed to be a superposition of terms like in the 

f i l ttHopf. ModelHopf. Model case of a single pattern:
μμ

μ

ξξ ji
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Where p is the number of patterns labeled by μ.

μ = 1

•Observe that this essentially the Hebb rule.

•An associative memory model using the Hebbian 
rule above for all possible pairs ij with binary unitsrule above for all possible pairs ij, with binary units 
and asynchronous updating is usually called a 
Hopfield model. The term also applies to 
variationsvariations.



Hopfield Model-11: Storage of many patterns

•Let us examine the stability of a particular pattern 
ξi
ν. The stability condition generalises to:

Hopf. ModelHopf. Model

Where the net input hi
ν to unit i in pattern ν is:
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Now we separate the sum on μ into the special term  
μ=ν and all the rest:

1 ∑∑
≠

+=
j

jjiii N
h

νμ

νμμνν ξξξξ 1



Hopfield Model-12: Storage of many patterns

•If the second term were zero, we could 
immediately conclude that pattern ν was stable 

di t th i t bilit diti Thi iHopf. ModelHopf. Model according to the previous stability condition. This is 
still true if the second term is small enough: if its 
magnitude is smaller that 1 it cannot change the 

h f h d h b l d ll b llsigh of hi
ν and the stability condition will be still 

satisfied.

•The second term is called crosstalk It turns out•The second term is called crosstalk. It turns out 
that it is less than 1 in many cases of interest if p is 
small enough.



Hopfield Model-13: Storage Capacity

•Consider the quantity:

∑∑−= jjiiiC νμμνν ξξξξ 1
Hopf. ModelHopf. Model

If Ci
ν is negative the crosstalk term has the same 

sign as the desired ξi
ν and does no harm. But if its is 

d l h h h f h

∑∑
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positive and larger than 1, it changes the sign of hi
ν

and makes the bit i of pattern ν unstable.

•The Ci
ν depends on the patterns we try to store•The Ci depends on the patterns we try to store. 

For random patterns and with equal probability for 
the values +1 and –1 we can estimate the 
probability P that any chosen bit is unstable:probability Perror that any chosen bit is unstable:

Perror=Prob(Ci
ν > 1)



Hopfield Model-14: Storage Capacity

•Clearly Perror increases as we increase the number p 
of patterns. Choosing a criterion for acceptable 

f ( P 0 01) t tHopf. ModelHopf. Model performance (e.g. Perror <0.01) we can try to 
determine the storage capacity of the network: 
the maximum number of patterns that can stored 

h blwithout unacceptable errors.

•To calculate Perror we observe that Ci
ν behaves like a 

binomial distribution with zero mean andbinomial distribution with zero mean and 
variance σ2 = p/N, where p and N are assumed 
much larger than 1. For large values of N*p, we can 
approximate this distribution with a Gaussianapproximate this distribution with a Gaussian 
distribution of the same mean and variance:



Hopfield Model-15: Storage Capacity
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Where the error function erf(x) is defined by:

∫
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•The next table shows values of p/N required to

∫ −≡ u duexerf
0
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π

•The next table shows values of p/N required to 
obtain various values for Perror:



Hopfield Model-16: Storage Capacity

Perror pmax / N 
0.001 0.105 
00036 0138

Hopf. ModelHopf. Model
0.0036 0.138 
0.01 0.185 
0.05 0.37 
0.1 0.61 

•This calculation tells us only about the initial
stability of the patterns. If we choose p <0.185N, it 
tells us that no more than 1% of the pattern bits will 
be unstable initially. 

•But if start the system in a particular pattern ξ ν•But if start the system in a particular pattern ξi
ν

and about 1% of the bits flip, what happens next? It 
may be that the first few flips will cause more bits to



Hopfield Model-17: Storage Capacity

flip. In the worst case we will have an avalanche 
phenomenon. So, our estimates of pmax are really 

b d W d ll l f tHopf. ModelHopf. Model upper bounds. We may need smaller values of p to 
keep the final attractors close to the desired 
patterns.

•In summary, the capacity pmax is proportional to N 
(but never higher than 0.138N) if we are willing to 
accept a small percentage of errors in each patternaccept a small percentage of errors in each pattern. 
It is proportional to N / log(N) if we insist that most 
of the patterns be recalled perfectly (this calculation 
will not be discussed)will not be discussed).



Hopfield Model-18: Energy Function

•One of the most important contributions of 
Hopfiled was the introduction of an energy function
i t l t k th F th t kHopf. ModelHopf. Model into neural network theory. For the networks we 
consider this is:

∑−= SSwH 1

The double summation is over all i and j. The terms 
i=j are of no consequence because Si

2=1; they just 

∑=
ij

jiij SSwH
2

contribute a constant to H. 

•The energy function is  a function of the 
configuration {S } of the system We can imagine anconfiguration {Si} of the system. We can imagine an 
energy landscape “above” the configuration 
space.



Hopfield Model-19: Energy Function

•The main property of an energy function is that it 
always decreases (or remains constant) as the 

t l di t it d i l lHopf. ModelHopf. Model system evolves according to its dynamical rule.

•Thus the attractors are the local minima of the 
energy surface.energy surface.

•The concept of the energy function is very general 
and has many names in different fields: Lyapunov 
function, Hamiltonian, Cost function, 
Objective function and Fitness function.

•An energy function exists if the weights are•An energy function exists if the weights are 
symmetric, i.e. wij = wji . However the symmetry 
does not hold in general for neural networks. 



Hopfield Model-20: Energy Function

•For symmetric weights we can write the energy 
function as follows:

∑Hopf. ModelHopf. Model

Where (ij) means all the distinct pairs ij, counting for 
l 2 h 2 l d h

∑−=
)( ij

jiij SSwCH

example 12 as the same pair as 21. We exclude the 
ii terms. They give the constant C.

•It is now easy to see that the energy function will•It is now easy to see that the energy function will 
decrease under the dynamics of the Hopfiled model. 
Let Si’ be the new value of Si for some unit i:

∑=
j

jiji SwS )sgn('



Hopfield Model-21: Energy Function

•Obviously if Si’ = Si the energy is unchanged. In 
the other case Si’ = - Si so, picking out the terms 
th t i l SHopf. ModelHopf. Model that involves Si: 
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•The first term is negative from our previous 
hypothesis and the second term is term is negative 
because the Hebb rule gives wii=p/N for all i. Thusg ii p



Hopfield Model-22: Energy Function

the energy decreases as it was claimed.

•The self-coupling terms wii may be omitted as
Hopf. ModelHopf. Model

The self coupling terms wii may be omitted as 
the do not make any appreciable difference to the 
stability of the ξi

ν patterns in the large N limit.

h ff h d d h b f•But they affect the dynamics and the number of 
the spurious states and it turns out that it is 
better to omit them. We can see easily why by 
simply separating the self-coupling term out of the 
dynamical rule:

∑+= jijiiii SwSwS )sgn(

•If wii were larger than the sum of the other terms 
in some state, then Si=+1 and Si=-1 could both be 

∑
≠ ij

jj

, i i



Hopfield Model-23: Energy Function

stable. 

•This can produce additional stable spurious states
Hopf. ModelHopf. Model

This can produce additional stable spurious states 
in the neighbourhood of a desired attractor, reducing 
the size of the basin of attraction. If wii=0 then this 
problem does not arise; for a given configuration ofproblem does not arise; for a given configuration of 
the other Si ‘s will always pick one of its states over 
the other. 



Hopfield Model-24: Spurious States

•We have shown that the Hebb rule gives us a 
dynamical system which has attractors (the minima 
f th f ti ) Th th d i dHopf. ModelHopf. Model of the energy function). These are the desired 

patterns which have been stored and are called 
retrieval states.

•However the Hopfield model has other attractors as 
well. These are:

•The reversed states;

•The mixture states;

•The spin glass states.



Hopfield Model-25: Spurious States

•The reversed states have been mentioned above 
and they are the result of the perfect symmetry in 
th d i f th H fi ld d l b t thHopf. ModelHopf. Model the dynamics of the Hopfield model between them 
and the desired patterns. We can eliminate them by 
following any agreed convention: For example we 

ll h b f f f bcan reverse all the bits of a pattern if a specific bit 
has value –1.

•The mixture states are stable states which are•The mixture states are stable states which are 
not equal to any single pattern but instead 
correspond a linear combinations of an odd number 
of patterns The simplest is a combination of threeof patterns. The simplest is a combination of three 
states:



Hopfield Model-26: Spurious States

•The system does not choose an even number
)sgn( 321 μμμ ξξξξ iii

mix
i ±±±=

Hopf. ModelHopf. Model
The system does not choose an even number 

because the sum can be potentially zero, but the 
activation is allowed only to take values –1 / 1.

h l f l l l h•There are also, for large p, local minima that are 
not correlated with any finite number of the original 
patterns ξi

μ. These are sometimes called spin glass 
states because of close correspondence to spin 
glass models in statistical mechanics.

•So the memory does not work perfectly; there are•So the memory does not work perfectly; there are 
all these additional minima in addition to the ones 
we want. The second and the third classes are



Hopfield Model-27: Spurious States

called generally spurious minima.

•These have in general smaller basin of attraction
Hopf. ModelHopf. Model

These have in general smaller basin of attraction 
than the retrieval states. We can use a number of 
‘tricks’ such as finite temperature and biased 
patterns in order to reduce or remove them.patterns in order to reduce or remove them.



Magnetic Materials

•There is a close analogy between Hopfield networks 
and some simple models of magnetic materials. 
Th l b ti l l f l h

Magn. Mater.Magn. Mater.

The analogy becomes particularly useful when we 
generalise the networks to use stochastic units, 
which brings the idea of temperature in network 
htheory.

•A simple description of a magnetic material consists 
of a set of atomic magnets arranged on a regular g g g
lattice that represents the crystal structure of the 
material. We call the atomic magnets spins. In the 
simplest case the spins can have only two possible p p y p
orientations: “up” (1) and “down” (-1).
•In a magnetic material each of the spins is influenced 



Magnetic Materials-1

the magnetic field h at its location. This magnetic 
field consists of any external field hext plus an 
i t l fi ld d d b th th i Th

Magn. Mater.Magn. Mater.

internal field produced by the other spins. The 
contribution of each atom to the internal field at a 
given location is proportional to its own spin.
•Thus we have a magnetic field for location i:

ext

j
jiji hSwh += ∑

•The coefficients wij measure the strength of influence 
of spin Sj on the field at Si and are called exchange 
i t ti t th It i l t f

j

interaction strengths. It is always true for a 
magnet that wij = wji , i.e. the interactions are 
symmetric. They could be positive or negative.



Magnetic Materials-2

•At low temperature, a spin tends to line up parallel to 
the local field hi acting on it, so as to make Si=sgn(hi). 
Thi h h l d i d d

Magn. Mater.Magn. Mater.

This can happen asynchronously and in random order.
•Another way of specifying the interactions of the 
spins is be defining a potential energy function:

Th th t h ith th H fi ld d l i l t

∑∑ −−=
i

i
ext

ij
jiij ShSSwH

2
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•Thus the match with the Hopfield model is complete:
• Network weights Exchange interaction strengths of 
the magnet;
•Net input of neuron Field acting on a spin (external 
field represents a threshold);
•Network Energy function Energy of magnet (hext=0)gy gy g ( )



Magnetic Materials-3

•McCulloach-Pitts rule Dynamics of spins aligning 
with their local field.

If th t t i t l th i

Magn. Mater.Magn. Mater.

•If the temperature is not very low, there is a 
complication to the magnetic problem. Thermal 
fluctuations tend to flip the spins, and thus upset 
h d f h l h f ldthe tendency of each spin to align with its field. 

•The two influences, thermal fluctuations and field, 
are always present.Their relative strength depends on y p g p
the temperature. In high temperatures the 
fluctuations dominate, while in lower ones the field 
dominates. In high temperatures is equally probable do a es g e pe a u es s equa y p obab e
to find a spin in both “up” and “down” orientations.
•Keep in mind that there is not an equivalent idea of



Magnetic Materials-4

“temperature” in the Hopfield model.
•The conventional way to describe mathematically the 

Magn. Mater.Magn. Mater.

effect of thermal fluctuations in an Ising model is with 
the Glauber dynamics. We replace the previous 
deterministic dynamics by a stochastic rule:

Thi i t k t b li d h th i S i
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hgyprobabilitwith
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•This is taken to be applied whenever the spin Si is 
updated. The function g(h) depends on the 
temperature. There are several choices. The usual 
“Gl b ” h i i i id h d f ti“Glauber” choice is a sigmoid-shaped function:
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Magnetic Materials-5

•A graph of the function is shown in the next figure 
for various values of the parameter β.

Magn. Mater.Magn. Mater.



Magnetic Materials-6

•β is related to the absolute temperature T by:

1β

Magn. Mater.Magn. Mater.

Where k is the Boltzmann’s constant

Tk B

=β

Where kB is the Boltzmann’s constant.
•Because 1-fβ(h)=fβ(-h) we can write the probability in 
a symmetrical form:

)2exp(1
1)()1(Pr
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Magnetic Materials-7: Case of single spin

•We apply the Glauber dynamics to the case of a 
single spin in a fixed external field. With only one spin 

d th b i t

Magn. Mater.Magn. Mater.

we can drop the subscripts. 
•We can calculate the average magnetisation <S> 
by:

)tanh(
)2exp(1

1
)2exp(1

1
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Where tanh(•) is the hyperbolic tangent function.
•This result also applies to a whole collection of N 

)2exp(1)2exp(1 hh ββ ++

pp
spins if they experience the same external field and 
have no influence on one another. Such a system is 
called paramagnetic.called paramagnetic.



Magnetic Materials-8: Mean Field Theory

•When there are many interacting spins the problem 
is not solved easily. The evolution of spin Si depends 

h hi h it lf i l th i S hi h

Magn. Mater.Magn. Mater.

on hi which itself involves other spins Sj which 
fluctuate randomly back and forth.
•There is no general way to solve the N spin problem 
exactly but there is an approximation which is 
sometimes quite good. It is known as mean field 
theory and consists of replacing the true fluctuating y p g g
hi by its average value:

ext
jiji hSwh += ∑

•We can then compute the average < Sj> just as in 
the single spin case:

j



Magnetic Materials-9: Mean Field Theory
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Magn. Mater.Magn. Mater.
•These are N nonlinear equations in N unknows but at 
least the do not involve stochastic variables. 
•This mean field approximation often becomes exact•This mean field approximation often becomes exact 
in the limit of infinite range interactions, where 
each spin interacts with all the others. This happens 
because then the h is the sum of very many termsbecause then the hj is the sum of very many terms, 
and a central limit theorem can be applied.
•Even for short range interactions, where wij≈0 if spins 
i d j th f l tti it t thi and j are more than a few lattice sites apart, the 
approximation can give a good qualitative description 
of the phenomena.



Magnetic Materials-10: Mean Field Theory

•In a ferromagnet all the wij’s are positive. Thus the 
spins tend to line up with each other, while thermal 
fl t ti t d t di t thi d i

Magn. Mater.Magn. Mater.

fluctuations tend to disrupt this ordering.
•There is a critical temperature Tc above of which 
thermal fluctuations win, making <S>=0, while 
beneath this the spin interactions win with <S>≠0, 
which is the same in every site. In other words the 
system exhibits phase transitions at Tc.y p c

•The simplest model of a ferromagnet is one in which 
all the weights are the same:

J )( ijallfor
N
Jwij =



Magnetic Materials-11: Mean Field Theory

•J is a constant and N is the number of spins.
•For zero temperature this infinite range ferromagnet 

Magn. Mater.Magn. Mater.

corresponds precisely (for J=1) to the one pattern 
Hopfield model for a pattern with ξi=1 for all i.
•At finite temperature we can use the mean fieldAt finite temperature we can use the mean field 
theory. In a ferrogmanetic state the magnetisation is 
uniform, i.e. <Si>=<S>. Thus we can calculate <S> 
by simply solving the equation:by simply solving the equation:

)tanh( SJS β=

•Here we have set hext=0 for convenience, but the 
generalisation is obvious. 
•We can solve graphically the above equation as aWe can solve graphically the above equation as a 



Magnetic Materials-12: Mean Field Theory

function of T: 

Magn. Mater.Magn. Mater.

Th t f l ti d d h th βJ i•The type of solutions depend on whether βJ is 
smaller or larger than 1. This corresponds to the 
different behaviour above and below the critical



Magnetic Materials-13: Mean Field Theory

temperature:
•When T ≥ Tc there is only the trivial solution <S>=0;

Magn. Mater.Magn. Mater.

•When T < Tc there are two other solutions with 
<S>≠0, one the negative of the other. Both are stable 
with the solution <S>=0 is unstable.

•The magnitude of the average magnetisation
<S> rises sharply (continuously, but with infinite 
derivative at T=Tc) as one goes below Tc. As T c) g c
approaches 0, <S> approaches ±1; all spins point in 
the same direction. See next figure:



Magnetic Materials-14: Mean Field Theory

Magn. Mater.Magn. Mater.



Stochastic Networks

•We now apply the previous results to neural 
networks, making the units stochastic, applying the 

fi ld th d l l ti t ll th

SS

mean field theory and calculating eventually the 
storage capacity.

•We can make our units stochastic by using the sameStoch. NetsStoch. Nets We can make our units stochastic by using the same 
rule as for the spins of the Ising model, i.e.:

)2exp(1
1)()1(Pr ii h

hfSob
ββ

m+
=±=±=

•We use the above rule for neuron Si whenever is 

)2exp(1 ihβm+

selected for updating and select units in random order 
as before. The function fβ(h) is called logistic 
function.



Stochastic Networks-1

•What is the meaning of this stochastic bahaviour? It 
actually captures a number of facts on real neurons:

SS

•Neurons fire with variable strength;

•Delays in responses;
Stoch. NetsStoch. Nets •Random fluctuations from release of transmitters in 

discrete vesicles;

•Other factors.Other factors.

•These effects can be thought as noise and can be 
represented by the thermal fluctuations as in the case 
f h l l dof the magnetic materials. Parameter β is not involved 

with any real temperature. Simply controls the noise 
level.



Stochastic Networks-2

•However, it is useful to define a pseudo-temperature 
T for the network by:

1

SS
•The temperature T controls the steepness of the 

d f (h) h 0 l h

T
1

≡β

Stoch. NetsStoch. Nets sigmoid fβ(h) near h=0. At very low temperature the 
sigmoid becomes the step function and the stochastic 
rule reduces to the deterministic McCulloch-Pitts rule 
for the original Hopfield network. As T increases this 
sharp threshold is softened up in a stochastic way.

•The use of a stochastic unit is not only for•The use of a stochastic unit is not only for 
mathematical convenience, but also because it makes 
possible to kick the system out of spurious local 
minima of the energy function The spurious statesminima of the energy function. The spurious states,



Stochastic Networks-3

will be in general less stable (higher in energy) than 
the retrieval patterns and they will not trap a 
t h ti t tl

SS

stochastic system permanently.

•Because the system is stochastic it will involve in a 
different way every time that it runs. Thus the onlyStoch. NetsStoch. Nets different way every time that it runs. Thus the only 
meaningful quantities to calculate are averages, 
weighted by the probabilities of each history.

•However, to apply the statistical mechanics methods 
we need the system to come to equilibrium. This 
means that averge quantities such as <Si> become 
eventually time-independent. Networks with an energy 
function do come to equilibrium.
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•We can now apply the mean field approximation to 
the stochastic model which we have defined and we 

ill th H bb l f th i ht

SS

will use the Hebb rule for the weights. 

•We restrict ourselves to the case of p << N. 
Technically the analysis here is correct for any fixed pStoch. NetsStoch. Nets Technically the analysis here is correct for any fixed p 
as N ∞.

•By direct analogy to the case of the magnetic 
materials we can write:

)tanh(
,

j
j

jii S
N

S ∑=
μ

μμξξβ

•These equations are not solvable since they have N 
unknowns with N nonlinear equations. But we can 
make a hypothesis taking <Si> proportional to one 

,j μ

yp g i p p
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of the stored patterns:
νξ ii mS =

SS

•We have seen that states are stable in the 
deterministic limit so we look for similar average states 

h hStoch. NetsStoch. Nets in the stochastic case. 

•We have by application of the hypothesis to mean 
field equation above:field equation above:

•Just as in the case of the deterministic network the

)tanh(
,

ν

μ

μμν ξξξβξ j
j

jii m
N

m ∑=

•Just as in the case of the deterministic network, the 
argument in the sigmoid can be split into a term 
proportional to ξi

ν and a cross talk term. In the limit of 
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p << N the crosstalk term is negligible and we have:

)tanh()tanh( mmmm ii βξβξ νν =⇒=

SS

•This equation is of the same as in the case of the 
ferromagnet. It can be solved in the same graphical 

h ll b bl f

)()( ii βξβξ

Stoch. NetsStoch. Nets way. The memory states will be stable for 
temperatures than 1. Thus the critical temperature Tc
will be 1 for the stochastic network in case p<<N.

•The number m by be written as:

m=<Si>/ ξi
ν =Prob(bit i is correct) – prob(bit i is 

incorrect)

•And thus the average number of correct bits in the
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retrieved pattern is:

)1(1 mNNcorrect +=

SS

•This is shown in the next figure. Note that above the 
critical temperature the expected number is N/2 (as it 

d f d ) h l l

)(
2correct

Stoch. NetsStoch. Nets is expected for random patterns), while at low 
temperature <Ncorrect> goes to N.
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•The sharp change in behaviour at a particular noise 
level is another example of phase transition. One 

i ht th t th h ill b th b t thi

SS

might assume that the change will be smooth, but this 
is not so in many cases in large systems. 

•This means that the network ceases to function at allStoch. NetsStoch. Nets This means that the network ceases to function at all 
if a certain noise level is exceeded.

•The system is not a perfect device, even at low 
temperatures. There are still spurious states. The spin 
glass states are not relevant for p<<N but the 
reversed and the mixture states are both present.

•However, each type of mixture state has its own 
critical temperature, above which it is no longer stable.
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•The next figure shows this schematically:

SSStoch. NetsStoch. Nets

•The highest of the critical temperatures is 0.46, for 
the combinations of three patterns. So, for 0.46<T<1p ,
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there are no mixture states and only the desired 
patterns remain. This shows that noise can be useful 
f i i th f f th t k

SS

for improving the performance of the network.

•To calculate the capacity of the network in the case 
where p is of the order of N we need to derive theStoch. NetsStoch. Nets where p is of the order of N we need to derive the 
mean field equations for this limit. However, we will 
not do this calculation but we will rather present the 
results First we need to define some useful variables:results. First we need to define some useful variables:

•The load parameter is defined as:
p

=α

i.e. the number of patterns we try to store as a fraction 
of the number of units in the network. Now it is of order 
O(1) while in the previous analysis it was of order

N
α

O(1), while in the previous analysis it was of order
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O(1/N). We can freely use the N ∞ limit in order 
to drop lower order terms;

SS

•In this case, p ~ N, and we cannot drop the crosstalk 
term in the mean field equations, as we have done 
before. Now we have to pay attention to the overlaps of 
h S d hStoch. NetsStoch. Nets the state <Si> and the patterns:

for all patterns not just the one being retrieved We

∑=
i

iiv S
N

m νξ1

for all patterns, not just the one being retrieved. We 
suppose that it is pattern number 1  which we are 
interested in. Then m1 is of order O(1) while each mν for 
ν≠1 is small and of order O(1/√N) for our randomν≠1 is small and of order O(1/√N) for our random 
patterns. Nevertheless the quantity:

∑
≠

=
1

21
ν

να
mr

≠1ν
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which is the mean square overlap of the system 
configuration with the nonretrieved patterns, is of 
order unity The factor 1/α=N/p makes r a true

SS

order unity. The factor 1/α=N/p makes r a true 
overage over the (p-1) squared overlaps and 
cancels the expected 1/√N dependence of the mν’s. 

Stoch. NetsStoch. Nets •It can be provided that the mean filed equations lead 
to the following system of self-consistent variables:

⎟⎟
⎞

⎜⎜
⎛
−=

mC exp2 2

⎟⎟
⎠

⎜⎜
⎝ rr

C
απα 2

exp

2)1(
1

C
r

−
=

⎟
⎠

⎞
⎜
⎝

⎛
=

r
merfm
α2
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Where we have written m instead of m1. 

•We can find the capacity of the network by solving

SS

We can find the capacity of the network by solving 
these three equations. Setting y=m/ √2αr, we obtain 
the equation:

)(22
2

fy ⎟
⎞

⎜
⎛ −Stoch. NetsStoch. Nets

•This equation can be solved graphically as usual. 
Finally we can construct the phase diagram of the

)(2 yerfeay y =⎟
⎠

⎞
⎜
⎝

⎛
+

π

Finally we can construct the phase diagram of the 
Hopfield model, which is shown in the next figure:
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SSStoch. NetsStoch. Nets

•We can observe the following:•We can observe the following:

•There is a critical value of α where the non-trivial 
solutions (m≠0) disappear. The value is αc≈0.138;

•Regions A and B both have the retrieval states, but also 
have spin glass states. The spin glass states are the 
most stable states in region B, where as in region A
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the desired states are the global minima; 

•In region C the network has many stable states, the 

SS

spin glass states, but these are not correlated with any 
of the desired states;

•In region D there is only the trivial solution <Si>=0;Stoch. NetsStoch. Nets In region D there is only the trivial solution <Si> 0;

•For small enough α and T there are also mixture states 
which are correlated with an odd number of the 
patterns These have higher energy than the desiredpatterns. These have higher energy than the desired 
states. Each type of mixture state is stable in a 
triangular region like AB, but with smaller intercepts in 
both axes The most stable mixture states extend toboth axes. The most stable mixture states, extend to 
0.46 on the T axis and 0.03 on the α axis.



Conclusions

•The Hopfield network is a model of associative 
learning and it is inspired by the statistical mechanics 
f ti t i lof magnetic materials.

•There are many other variations of the basic Hopfield 
model. However, for all these variations the qualitive

ConclusionsConclusions

model. However, for all these variations the qualitive 
results hold even though the values of the critical 
parameters change in a systematic way.

•We can use the mean filed approximation in order to 
calculate the storage capacity of the network.

•The Hopfiled model can handle also correlated•The Hopfiled model can handle also correlated 
patterns using the method of pseudo-inverse matrix.



Conclusions-1

•The network can be used as a model of Central 
Pattern Generators. 

•The model can also be used to store sequences of 
states. In this case the point attractors become limit 
cycles.

ConclusionsConclusions

cycles.


